
ISSN 0265-2919

/Nen@) is) Saulleleeliies)
IR £1 Aus $195 NZ $2.25 SARI95 Sing $4.50 USA & Can $195

RICATION Next Week
LIGHT REVOLVER Laser discs are now pla ola
within the budget of the micro owner excitement for Spectrum and

i Commodore users. We take
a close look at this unusual
peripheral.

MAKING MOVES The Sharp PC-5000 . ni mes een be linked
is an innovatory portable micro scatouet ate sa aa

. ae : control. We explore the
- _ possibilities of this exciting

_...__ma.icmimn oe application.

ORDERLY PROCESSION We learn wanes 4
how to create our own sequential files prfbepcieh steely aay

FINAL REPORT Concluding our series chert altace
on business software for home micros company plans to stay ahead

of the competition.

COMPUTER SCIENCE

YOUR NUMBER’S UP We design a
binary to digital display converter QUIZ

In this section we will be featuring a regular quiz
hased on the articles in the current issue.

FROM BREAK TO BUS A weekly
glossary of computing terms 1) Using 6502 Assembly language, add two

numbers stored at memory locations ADR1 and
ADR2 and store the result in location ADR3.

2) Perform exactly the same calculation, but this
time in Z80 Assembly language.

214 3) How would you change the screen colour ona
Ee Commodore 64 to white with a black border?

4) How many different sprites are available on
COUNTER INSTRUCTIONS Learning the Commodore 64

how to implement labels and loops is 216 5) What are the three main buses connected to a
fundamental to efficient programming typical microprocessor?

6) What do the letters CP/M stand for?

GO SUB GO! We begin a new series on
graphics for all the popular micros

Answers in next week’s issue.

QUIZ
209 COVER PHOTOGRAPHY BY IAN McKINNELL

BREAKING AWAY Zilog is the
company responsible for the Z80 CPU

WORKSHOP
WORKOUT Our suggested answers to the
problems set on page 194

Editor Max Phillips; Art Director David Whelan; Technical Editor Brian Morris; Production Editor Catherine Cardwell; Picture Editor Claudia Zeff; Sub Editor Robert Pickering; Designer Julian Dorr; Art Assistant Liz Dixon; Editorial
Assistant Stephen Malone; Contributors Lisa Kelly, Steven Colwill, Geoff Bains, Tony Harrington, Richard Pawson, Mike Wesley; Group Art Director Perry Neville; Managing Director Stephen England: Published by Orbis Publishing
Lid: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production Co-ordinator lan Paton; Circulation Director David Breed; Marketing Director Michael Joyce; Designed and produced
by Bunch Partworks Ltd; Editortal Office 85 Charlotte Street, London W1P 1LB; © APSIF Copenhagen 1984; © Orbis Publishing Ltd 1994: Typeset by Universe; Reproduction by Mullis Morgan Lid; Printed in Great Britain by Artisan Press Ltd,

HOME COMPUTER ADVANCED COURSE — Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to sro aplenmetg HOME COMPUTER ADVANCED COURSE Copies are obtainable by placing a regular order at your newsagent, or by taking outa subscription. Subscription rates: for six months (26 issues) £23.80; for one year (52
issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street, Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.
Back UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. Numbers
AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE &
MALTA: Back numbers are available at cover price from nou newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME ~ UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 5, 6 and 7. EUROPE: Write with remittance of £5.00 per
binder (incl. p&p) —_ to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER ADVANCED
COURSE BINDERS, Miller (Malta) Ltd, M.A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED COURSE BINDERS, First Post Pty Ltd, 23
Chandos Street, St. Leonards, NSW 2065. The binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER ADVANCED COURSE BINDERS, Gordon &
nae Ld aS PQ Box 1595, Wellington. SOUTH AFRICA: Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER ADVANCED COURSE BINDERS, Intermag, PO Box 57394,
pringfie :

Note ~ Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

—a-——_

LASER DISKS/APPLICATION

LIGHT REVOLVER

Floppy disks and video discs are high-
density direct-access storage devices that
until recently have been too expensive for
the home enthusiast or small business user.
However, increased production and
competition in both industries have resulted
in a Steady fall in price. We review their
range of applications for home micros.

Many people will be surprised to learn that laser
disc players, regarded as high-cost luxury items a
few years ago, now cost less than video cassette
recorders, yet provide far better picture
reproduction. A television picture is a dynamic
image that can be recorded on a video tape as an
unbroken sequence. The only way to find a
particular part of the sequence is to wind the tape
forward, either at ‘play’ speed or by using ‘fast
forward’ with the tape counter to guide you. Discs
store the images as separate frames and enable you
to go directly, accurately and quickly to any one of

them. A frame’s location on disc can be described
in terms of track and sector, and a microprocessor
can keep an up-to-date catalogue of the locations.
The microprocessor oversees the disc access and
can provide freeze-frame or slow motion facilities,
and stereophonic sound.

The microprocessor’s tasks of driving a
turntable at constant high speeds and positioning
a playback head precisely at certain positions on
the surface are not the major technical
achievements of disc technology. The greater
challenge was in facilitating the enormously high
storage density of the discs. To enable thousands
of frames to be stored on a disc the size of a 12”
long playing record was especially daunting.

If you've ever used high resolution graphics on
your micro, then you know that a television picture
is made up of individual dots (pixels) of light — the
more dots per screen the better the picture
displayed — and that storing high resolution
screen displays uses up a lot of memory. The BBC
Micro, for example, has a maximum resolution of

Laser Lounge
Laser disc players will soon be
as inexpensive as home
computers and it won't be
unusual to find the two linked
together in the home. By
buying appropriate discs and
software, you will have access
to vast pictorial databases and
sophisticated training
programs, as well as animated
adventure games

THE HOME COMPUTER ADVANCED COURSE 201

2 coo o fF

LASERVISION COURTESY OF TELETAPE VIDEO LTD

IAN McKINNELL

IAN McKINNELL

New Memory
Twelve-inch laser discs and the smaller compact discs can be
used for storing both video and audio information as well as
the digital data stored on computer cassettes and floppy
disks. The drawback is that the discs cannot be written to
and are technically ROM only. This means that you cannot
Save your Own programs and information on laser disc.
Instead, you will have to buy or hire pre-recorded software

640X256 pixels per screen display, which
occupies exactly 20 Kbytes of memory. If a
television frame were no finer in resolution than
this, then storing one second’s worth of video (at
25 frames per second) would require 25X20
Kbytes of storage! A minute of a television
programme would occupy 30 Megabytes
(30,000,000 bytes), and an episode of your
favourite television serial could take over a
Gigabyte (1,000 Megabytes) of memory — and on
the single- ‘sided single-density floppy disks that
most home computers use would require over
6,000 disks and a week’s work!

Given these figures, video tape storage
becomes rather more attractive: putting half an
hour’s worth of television programs on a disk
seems to pose insurmountable problems.

The answer to this dilemma lies in writing the
data very small. A laser disc recorder etches the
data with a hair-fine laser beam onto a metallic
platter coated in a tough translucent shell. A low-
power beam is used to read the data off the disk.
Lasers are used as the read-write stylus for this disk
because they are such fine-resolution low-
tolerance devices. No other technique could read
and write so much data in so small a space.

The format is a combination of the techniques
used on hi-fis and disk drives. The grooves of a
gramophone record form a continuous spiral, and
the walls of the grooves carry an etched

202 THE HOME COMPUTER ADVANCED COURSE

representation of the recorded sound’s
waveforms. Most micro users know that the tracks
on a disk drive are concentric circles, and that
information is written magnetically onto the disk,
and stored digitally as patterns of zeros and ones.
The laser disc format uses tracks, not grooves, but
these form a spiral. Information is etched optically
onto the disc in patterns of ones and zeros, but
cannot be erased. The ones and zeros (which
represent the patterns of dots comprising the
television picture) are written on the disc surface
by the laser’s burning tiny pits into the metal film to
represent ones, and leaving it intact to represent
zeros. A pit is half a micrometre (0.0005 mm)
wide, and one tenth of a micrometre (0.0001 mm)
deep. Therefore, a square centimetre of disc
surface could hold 400,000,000 of these pits.

This astonishing miniaturisation is just
sufficient to cope with the storage demands of
video. A 35 cm diameter disc holds 54,000
television frames per side, or roughly 36 minutes
of playing time. The calculations of frame size that
we made earlier in this article were based on
computer graphics resolution in black and white,
whereas the laser disc has to store colour
information for each dot of the television picture,
and carry an audio track as well. A colour frame,
with its corresponding sound track, might
therefore require 100 Kbytes of storage space.
54,000 such frames would use up 5,400,000
Kbytes — 5.4 Gbytes.

Having overcome the problem of storage
limitation, laser discs offer extensive applications
possibilities. One major benefit is to remove one of
the biggest obstacles in data processing — data
collection and entry. Information is usually readily
available, but somebody still has to sit down at a
terminal and actually type coded representations
of the data into the system — a tedious, expensive
and time-consuming procedure. If instead you can
point a camera at the data, and let that store the
visual information on disc while you enter only
indexing details of the recorded pictures, then the
workload is greatly diminished.

Laser disc players vary greatly in their
sophistication. Already available are cheap
players for home use. These can be used to show
films just like an ordinary video cassette recorder
but with the added advantage of tremendous
picture quality both in normal use, and in freeze-
frames and slow motion playing. You can also
select individual frames on some machines by
keying their number on a handset and using a
search facility. The player will blank the screen for
a moment and return with the relevant picture
displayed.

The real possibilities don’t begin until you can
have individual frames selected by a computer
program. Players that can do this are available
from companies such as Pioneer and Philips, but
as yet are expensive and intended only for
professional use. The simplest system is to use an
IEEE or RS232 interface so that the computer can
select a particular frame by its number.

Appropriate software on the computer can keep a
list of the available frames on a database and select
from them as it needs to.

Philips has taken the idea a step forward and
built a simple microcomputer into its more recent
models. This can load a program appropriate for a
particular disc from either an EPROM cartridge
plugged into the machine, or alternatively from off
the laser disc itself. Each laser disc stores two audio
tracks and one video track. This allows a single
disc to have a soundtrack in two languages for
example. However, if the second audio track is not
needed it can be used to store a computer
program.

So we have a bank of 54,000 quality images
under the control of the computer. The final stage
is to mix the pictures from the laser disc with text
from the computer. This could be done with two
separate monitors, or by mixing two video inputs,
or by using a monitor with its own teletext
generator. This final step is an entirely new
medium — interactive video. The user and
software can guide the television display, both
action sequences and still frames, by reading the
disc in any order.

The most obvious application is for a pictorial
database. The user could ask questions of the
computer and it would retrieve relevant
information from a database and instruct the

_ player to display an appropriate video frame. This
could be used for reference in libraries and
schools, for everything from identifying various
flowers to selecting items from a catalogue.

Interactive video can progress a stage further by
involving the user in the sequences shown on the
screen. A training program could explain

something with a short clip of film and then ask
questions, recapping if necessary or going into
more detail and so on. You could even produce
films that the user directs by taking decisions on
behalf of the characters in the story. The whole
course and ending of the film would be different
depending on how you ‘play’ it. Fans of adventure
games on home micros should find these new
possibilities most absorbing.

There are, of course, problems with developing
this market. Apart from the cost of equipment and
manufacturing laser discs, new skills have to be
developed in designing and producing interactive
discs, both in terms of computer software and the
scripting and filming of images. Many small
companies are beginning to face these challenges
and one multi-national, a company called
Computer Assisted Televideo (CAT), has already
established itself as a dominant force in the
business. The company provides a complete
service for customers — choosing and installing
equipment, designing and producing discs and
writing the relevant software. CAT is willing to
tackle almost any application of interactive video
but high costs currently limit most of its work to
producing training programs for large businesses.

However, the possibilities for the home micro
owner should not be ignored. Although the cost of
producing discs is high, it is no higher than the
costs associated with films and recorders. Laser
discs already sell for around £10 each so
interactive discs could be sold, with software, for
around £15 to £20. Considering the quality of
entertainment and educational programs made
possible by interactive video, this is a very
reasonable price indeed.

Interactive Video
Many laser disc players have
an IEEE or RS232 interface
that allows them to be

controlled by microcomputers.
A typical set-up might be a
computer with a database
relating to pictures on the
laser disc stored on floppy
disks. The user can select
items of interest fram the
database, the computer will
then instruct the laser disc
player to fetch and display the
appropriate picture by
reference to a frame number.
The system shown here adopts
a popular approach of
combining the computer's
output and the laser disc
pictures on the one screen. A
simpler system would use two
separate screens

STEVE CROSS

ORDERLY PROCESSION
name such as ‘DATAFILE’, followed by the file type
(SEQ, standing for sequential file) and the access
method (WRITE indicating that the file is being

The sequential (or serial) file file is a heritage of
the days of tape-based data processing; if

prgsnticg 9 silgrse ee he form OPENed for writing). Sequential files can be
of mass storage for the |: years, tien OPENed for either writing to or reading from, not
our methods of handling data would be very — j oth at the same time. The effect of this command
different indeed. In this article we discover _ js that the device read/write head is energised, and
how to create and access sequential files a ‘header’ record consisting of the file name and
from a BASIC program. some system information is written to mark the
prt se: e: "tat of the file

The binary (or program) file is a Fadtiesce case eof The PRINT#5 command in line 200 sends data
a sequential file. When you type SAVE“progname”, to the file. PRINT has its usual meaning, but the ‘#’
the operating system performs the several discrete sign indicates that data is to be sent to the specified
operations required in creating a file: first, it opens channel rather than to the screen — the default
communication with the tape or disk drive, and output channel. The contents of RS are, therefore,
writes a header label containing the file name and sent down channel 5 to the sequential file called
some information about the file contents. Next, ‘DATAFILE’. The file now contains one record — the
the operating system writes the block of memory _ string, “This is one record of the file”. Finally, CLOSE 5
‘containing the current program into the file. closes channel 5 to further communication, and
Lastly, it writes an end-of-file marker to the file, writes an end-of-file marker onto the file.
and closes communication between the computer Information in a file is intended to be read at a
and the tape or disk drive. later stage, for example:

The BAsIc commands used in creating a : ;
sequential file vary from computer to computer, - ene eee sate
but they must all carry out the same tasks. Taking 600 CLOSE3.
the Commodore 64 as an example: 650 PRINT AS

100 RS=“This is one record of the file”
150 OPEN 54,2, “DATAFILE,SEQ, WRITE” sas uss the Seaieananeae ansanaeee
200 PRINT#5,RS the beginning of the file called DATAFILE and

250 CLOSE 5 prepare to read from it’, whereas previously it
This starts with the OPEN 51,2 command, which meant ‘create a file called DATAFILE, and prepare to

prompts the operating system to establish a write toit’. The channel numbers are different, but
channel of communication, called channel 5, to they are simply labels (a different number could

device number 1 — the tape drive. The operating have been chosen in both cases without affecting

system can create sequential files on a number of the operation); the device address, however, is the

different devices, and it can access several same in both cases because the file is stored on

different files at one time, so the channel from device 1 — the tape drive. The file name and the

computer to device and thence to a particular file _ file type are the same because they identify the file

must be labelled. (The number 2 is specificto the _ to be accessed, but the access method is different
Commodore and unimportant for the moment.) — READ instead of WRITE.

After the OPEN command comes the filename. § This program has INPUT#3,AS, meaning ‘input
On the Commodore the file name consists of a from channel 3’ instead of from the keyboard —

Be the default input channel. The first complete
record in the file is read and sent along channel 3
into the variable AS, just as it was sent along

a channel 5 from the variable R$ by PRINT#5,RS.
Some of the limitations and most of the

“Order Of Play advantages of sequential files are thus revealed:
Sequential files were developed with tape storage in | they can store anything that a variable can hold,
mind; but the order in which records are sent to the and there are no restrictions on file size or
file is the order in which they must remain. The only | Structure. On the other hand, the contents of a
way to sort or edit a sequential file is by creating a sequential file must be read from the start of the

J new version of it elsewhere on tape, justas amusic | file, record by record; there is no way to open the
cassette can be edited only be re-recording or by file at a particular record, nor to skip, re-read,

204 THE HOME ‘a

physically cutting the tape delete, insert or append a record.

R ADVANCED COURSE

File And Find
iv?

200

201

220

240

260

280

300

ov?

400

401

420

440

Basic Flavours

600 GT$=GETS Delete line 1540
1520 *DISK 260 ZS=CHRS(K):LET CS
1530 MODE 7
1540 DS=CHRS(12):PRINT DS“USE UPPER CASE” 540 LET ZS=LS
1550 PRINT*--HIT ANY KEY--”:GTS=GETS 600 PAUSE 0
2040 C8-OPENOUT(ZS) |
3040 C8-OPENIN(ZS) 3080 INPUT #8:RS
9020 PRINT“END OF PROGRAM”

REM++++++4+++4++4CBM C6G+++teeeeet

REM+ WRITE FILES +

REM+4+++4++4++4+++4CBM C6d++++e¢+44+44+

GOSUB 1500

FOR K=65 TQ 930

ZS$=CHRS(K) +XS$:CS=DSt+"WRITING "+CHRS(K)

GOSUB 2000

NEXT K

REM++ +++ +++ tte tte ¢eeeteeeeete eee

REM+ READ FILES +

REM+++ ++ +++ 4e¢e¢¢¢¢¢¢¢ eee eeeeest

POR C=O —(O i SIEP O:FOR Mei 10 |

PRINT D®; "ACCESS TO RECORDS"

INPUT"SEARCH STRING (¥=QUIT)"5NS

LS=LEFTS(NS,1):IF LS="%" THEN GOTO S000

IF LS<"A" OR LS>"Z" THEN M=0

NEXT ™M

2S=LS+YS

GOSUB 3000
PRINT TAB(S) "RECORD
GET GTS:IF GT$=""
NEXT L
END
RE NIH HERRERA
REM¥XXXXINITIALISE S/REEXHXHHH
RE MH HHH HHH KKK KKK HHH KKH HHH KIKI
D$=CHRS(147):PRINT D$, CHRS(8) } CHRS(142)
X$=",S,W":YS=",S,R"
RETURN
REMEXX HK KKK KH HHH HHH IE
REM¥XXXXWRITE A FILE S/RXXX%H¥%
RE IIA RAEI EEE IEEE IEE
PRINT CS:INPUT"HOW MANY RECORDS";R
OPEN 8,8,2,2%
IF R=O THEN PRINT#S, "¥"!:CLOSES: RETURN
FOR I=1 TOR
PRINT CS:PRINT "RECORD #"31
INPUT “TEXT....."3R%
PRINTHS, RS
NEXT I
PRINT#S, "*": CLOSES
RETURN
REBAR HRBH EB EEEEEHHHEHHEIEE
REM¥XXX¥READ A FILE S/RXXXXXX¥
REMXX XH KX HHH HHH HII
PRINT D$;"SEARCHING ";L%;" FOR
OPEN 8,8,2,2%
FOR I=1 TO 100000
INPUT#8,R&
PRINT RS
IF R#="%" THEN N=0:I=100000
IF R®=NS% THEN N=I!:1=100000
NEXT I: CLOSES: N$=""
RETURN
REM¥X***XCLOSE PROGRAM¥XX#**¥
PRINT CHRS(9);"END OF PROGRAM":STOP

"3Ns "(HIT ANY KEY) "
THEN 600

"3NS

‘cen Microdrive
Insert LET where necessary.
Replace PRINT DS;.. by CLS PRINT..

Follow the Spectrum variations for lines 260 and 540 Replace PRINT CS by CLS:PRINT: CS
Replace PRINT#8, INPUT#8, and CLOSES by
PRINT#C8, INPUT#C8, and CLOSE#C8

Replace OPEN 8,8,2,ZS by OPEN #8;“m”:1:ZS
Replace CLOSE8 by CLOSE #8

WRITING’+ZS
480 LET LS=NS(1):IF LS=“*” THEN GOTO 5000

1520 CLS:LET F2=PEEK 23658:POKE 23658,8

9020 POKE 23658,F2:PRINT “END OF PROGRAM”:STOP. |

220: Initialise

260-280: Create files “A” to “Z’

420-540: Input search record, i
find initial letter, identify
file containing it

560:Search that file a

580-600: Report outcome of ge
search

1520: Clear screen, set upper 7
case mode

2040: OPEN file to WRITE

2060: Check for empty file,
write “*”, CLOSE file

2120-2140: Input text of recorc
write it to file

2180: Write “*” as last record,
CLOSE file

3048: OPEN file to READ

3120: Test for last record,
quit search

3140: Test whether record
found, quit search

3160: CLOSE file

ean ecanea aees naan

This program demonstrates ©
the use of sequential files on
disk by creating a simple
alphabetical index book
comprising 26 files, one for
each letter of the alphabet.
Into each file you can type
records beginning with that
letter, or no records at all.
You can then search for any 4 eee

record. The appropriate file ee
will be searched and
displayed until the record is
found; if it is not found, the
message ‘RECORD 0’ will be
displayed.

The program uses the
disk operating system to gain
direct access to the file
appropriate to the search
record; the file itself is then
read sequentially, however.
This cuts search time to a
reasonable length; if the files
were On tape, searching
would be unbearably slow

ROY INGRAMS

‘THE HOME COMPUTER ADVANCED COURSE 205

The LCD display comprises
seven individually switchable
bars, here labelled ‘t’ to ‘2’

YOUR NUMBERS UP

KEVIN JONES

Seven-segment displays are used on
calculators, watches and some portable
computers to represent decimal digits. In
this instalment of the logic course, we design
a ‘binary to seven-segment display
converter’ — a circuit that will convert the
binary signals used by computers into the
decimal digits that humans normally use.

In our circuit design we shall assume that the
binary representations of decimal numbers are in a
code known as binary coded decimal, or BCD.
That is, each decimal digit is stored as a group of
four binary digits, as shown in the table.

206 THE HOME COMPUTER ADVANCED COURSE

A seven—segment display represents decimal
numbers by illuminating certain light-emitting
diodes, in the case of an LED display, or by
changing the polarity of certain bars (LCDs) in a
liquid crystal display. The illustration shows how
we have chosen to name the seven segments (the
top bar is termed ‘t, the lower bar ‘w’, and so on).
We also. give the various combinations of bars
required to form the digits 0 to 9.

This is all the information that we require to
assemble a truth table for our converter. We can
tell from the illustration on the opposite page what
bars need to be activated when the circuit receives
each individual input. For example, if the binary
input is 0100 (decimal 4), the circuit will activate
the bars labelled u, v, y and z. Similarly, the input
1000 (decimal 8) will cause all of the bars to be
illuminated. The truth table for the circuit will be:

Unfortunately there is no-easy way to analyse this -
truth table, and consequently each output —t, u, v,
Ww, X, y and z — must be simplified separately. We
can construct a Karnaugh map for each output,
placing on each map the ‘don’t care’ (X)
conditions. These may aid simplification in some
cases. The seven k-maps, one for each line, are
given here. By circling groups, we can produce a
simplified expression for each output line. Further
simplification is possible in some cases by
factorisation.

The first k-map, for example, deals with those
inputs that will cause the bar ‘t to be activated (this
bar is used in all but two of the numbers).
Having simplified expressions for all the output
lines, we can then draw up the final circuit.

Bar Codes
From these diagrams we can
determine which bars need to
be activated to form each digit.
The simple digit, ‘1’, needs only
the bars labelled ‘u’ and ‘v’ to
be switched on. The truth table
on the opposite page gives the
outputs needed for all the digits

D D

w=A+C.D+B.C+B.D+B.C.D. x=C.D+A.D+B.D y=A+B.C+B.D+C.D r-A¥B.C+B,0+B.D
=(A+B+C). D =A+B.(C+D)+C.D =A+B.C+B.(C+D)

“te
The circuit we have designed operates one display switches each unit in the display on and off in

ll only. As most circuits of this type have eightor sequence so that at any one time there is only one
even 10 units, it would seem that it is necessary to unit accepting information from the converter
duplicate the circuit for each cell. However, it is circuit. Because this happens at high speed, the
possible to share one converter between all the display appears steady and gives no trace of the
displays by a process known as multiplexing. This _ rapid switching that is occurring.

THE HOME COMPUTER ADVANCED COURSE 207

LIZ DIXON

COURTESY OF NEW SCIENTIST

208 THE HOME COMPUTER

BREAK
You can usually break a program when it is
running by pressing a particular key — often STOP,
BREAK or ESCAPE. A break stops a program
running and returns control of the computer to the
user. However, the computer will first save any
temporary information used while running the
program to a reserved area of memory. This will
include information such as which line was being
executed, any loop or subroutine counters, and so
on. This is done so that you can restart the program
at the point at which it was stopped without
affecting its operation.

Breaks are most often used when debugging a
program. You can break it at the relevant point,
have a look at and perhaps alter the contents of
variables and then continue program execution
where you left off. Once a program is bug-free, the
break key is usually disabled bythe program so that
it can’t be stopped during execution. This reduces
the risk of accidental loss of data, and protects the
program listing from inquisitive eyes.

BUBBLE MEMORY
Bubble memory stores information (patterns of 1s
and Qs) in the form of magnetic force, unlike the
tiny electrical charges or currents used in
semiconductor RAM memory. But unlike other
magnetic media, such as floppy disks or tapes,
bubble memory is completely solid state (it has no
moving parts). A bubble memory is created by
treating a small crystal of garnet, which will form
itself into hundreds of tiny magnetic domains, or
bubbles, each one of which may be magnetised to
store a ‘1’ or left unmagnetised to indicate ‘0’. The
characteristic pattern formed on the crystal can
also be created by mixing water and oil containing
a fine suspension of iron particles, and applying a
strong magnetic field to them.

The bubbles in a bubble memory are arranged
in the form of loops, which circulate constantly.
Each loop interfaces with a central control loop,
and information is passed across the boundary
where the two meet. The result is that bubble
memory cannot achieve the same kind of access
speeds as true random access memory, though it is
considerably faster than disk or tape. However,
bubble memory does have advantages over RAM:
it is non-volatile (its contents are retained even
when the power is switched off) and considerably
less susceptible to corruption from electrical
interference.

ADVANCED COURSE

BUBBLE SORT
The bubble sort is an algorithm for sorting an array
of data into alphabetical or numerical order. It is
one of the easiest algorithms for the beginner to
comprehend (and therefore program), but the
corollary is that it is slow and inefficient compared
with other techniques. The name derives from the
way that, with each sorting ‘pass’ through the data,
an item will ‘bubble’ towards its correct position.
The same algorithm is also sometimes referred to
as a ripple sort.

BUFFER
The function of a buffer at the end of a railway line
is to absorb the difference in speed between a
moving train and a stationary end-stop, if that
Should ever become necessary. Buffers in
computing are named by analogy with these
familiar devices. There are two kinds of buffers ina
typical home computer system: hardware buffers
and software buffers.
A hardware buffer ‘absorbs’ the difference

between the electrical operating voltages of
different parts of a computer system. Most
peripherals, for example, would draw more
current than the output from a microprocessor or
peripheral interface chip could deliver. A separate
buffer chip is therefore installed, effectively just to
amplify the strength of the digital signal.
A software buffer ‘absorbs’ the difference in

operating speed of parts of the system. It consists
of a section of RAM memory that can be filled
with data by one device at its own desired speed,
and then emptied by another at a faster or slower
rate. There will generally be buffers between the
microprocessor and the keyboard, the disk drive,
the printer, and sometimes the screen.

If you use a microcomputer for word
processing, then it is possible to increase your rate
of working by adding on a large memory buffer
between the computer and printer. When the
PRINT command is given, the computer will send
the entire page to the buffer almost
instantaneously. Then, while the printer is
emptying the buffer at its own rate, you can be
typing in the next document instead of being
forced to wait. Such buffer boxes can contain as
much as four Kbytes of RAM — enough for a 700
word document.

BUS
A bus is simply a channel within a computer
system along which data is transmitted. It usually
takes the form of either a group of wires or a set of
tracks on a printed circuit board. Some buses are
internal to the system, others lead to sockets to be
used for expansion. There are three essential buses
inside every computer, linking its microprocessor
with the rest of the system. The address bus carries
the address of the memory location or device to be
used and the data bus carries information to or
from that location. The control bus carries the
signals that control and synchronise the operations ©
of the various chips in the system.

In the last instalment of Workshop w we set
some simple exercises to test your
knowledge of the topics we have covered.
Here we present the answers. Our answers
may not match yours exactly, as there are
numerous ways of designing a circuit to
perform a particular task. However, you will
be able to prove that your circuits work by
testing them against the truth tables given in
the problem.

, integrated cuit _ a amt Let with four

2 7 @

The values of the resistors illustrated are: a) 6,400K-ohm and b)
150K-ohm. A 150-ohm resistor has brown-green-brown colour
bands (reading towards a gold or silver band).

2) NOR Gate
The most obvious method for building a NOR gate is to
combine the two circuits for OR and NOT together as shown
below:

D PF we

—{eKHH|! . However, the short-cut method is to use the circuit for an OR
gate and take the output signal from the collector of the
transistor rather than its emitter, in a similar way to the NOT
gate circuit:

HH
SS

LIZ DIXON

THE HOME COMPUTER ADVANCED COURSE 209

IAN McKINNELL

MAKING MOVES

The portable MS-DOS machine from
Sharp has the appearance of a small
electric typewriter. But below the lid of the
PC-5000 lurk, among other features, a
built-in crystal display and a_ bubble
memory. The computer also boasts a case
specially designed to accommodate its own
optional printer.

Portable computers take many forms, but the
most popular style recently has been the lap-held
portable, such as the TRS-80 Model 100 and the
Epson HX-20. These machines incorporate a
lightweight LCD screen and can run quite
efficiently on battery power alone. The Sharp
PC-5000 is the most expensive machine of this
kind. It continues this design trend and expands
into new territory by relying on bubble memory
instead of cassette storage.

Bubble memory caused quite a stir in the
industry when the idea was introduced several
years ago, but has not caught on as expected
because few companies have been able to
overcome problems with speed and reliability.
Sharp appears to have solved the problems,
because their test machine proved to be very fast
and reliable. Bubble memory requires very little
power and permits the storage of large amounts
of data in a tiny space. The principle involves
storing data in magnetically-coded bubbles.

The PC-5000 resembles a small, portable
electric typewriter. The lift-up lid exposes a
sculptured typewriter: keyboard with eight user-
defined function keys and four cursor arrows
placed neatly across the top. The lid is hinged and

| This unit contains $5 320K disk drives running woe
It connects to the back of the PC-5000, but cannot
machine's battery power. Software written for oth
machines must be formatted for the 8-line display

210 THE HOME COMPUTER ADVANCED COURSE

contains the LCD screen. Although fairly heavy,
the lid is held in place by a ratchet assembly,
which allows it to be moved into several positions
for comfort. Above the keyboard is a panel with
three LED warning lights, (power, low battery,
bubble), and a slot for a bubble memory pack.

Behind this panel is a tray where the optional
printer sits. The printer itself is a rectangular box
that fits neatly into the tray. It is a thermal printer,
producing 37 characters per second. On heat-
sensitive paper, the print is of very good
appearance, although the paper itself detracts
somewhat from the quality of the document.

The Sharp PC-5000 has 128 Kbytes of user
memory, and 192 Kbytes of ROM, including
Microsoft GW Basic, the same version used on
the IBM PC. The CPU is Intel’s 8088, again the
same as the PC, and the Sharp runs MS-DOS as
its operating system. The computer addresses the
bubble as though it were disk drives A and B.
Sharp offers a twin floppy disk drive unit that can
be plugged into the back of the PC-5000. ‘These
drives would be addressed as C and D. The
floppy drives cannot be run on battery power.

The Sharp comes with several software
packages from Sorcim, including SuperCalc,
SuperWriter, and SuperComm, a_ telecom-
munications program. The programs come on a
bubble pack, and are chosen from the system
menu by pressing one of the function keys. The
values of the function keys can appear as labels
on the last line of the screen.

Sharp has for years been known for quality in
design and engineering, and with the PC-5000
has managed to fit a powerful computer into a
small package.

Bubble Memory Controller
This card acts like a disk drive
controller, except that it controls }
input and output from the
bubble pack slot |

ROM Board
This board has 128K ROM
including MS-DOS, character
generators for the display and
printer, some system |/0 and
communications, and PISCS.
PISCS is a chip that translates
signals from the bubble pack
into a language that MS-DOS
understands. With the help of
this chip, MS-DOS reads the
bubble packs as disk drives A
and B

Expansion Slots
These slots hold expansion
RAM packs, or software held in

ROM cartridges

— 128K Dynamic RAM

Bubble Pack Slot

a —- Thermal Printer

tier,
?* Hees,

ee%

+ Mitte Rae

AU hes,

Veg Ae ie) mmm SR ad TTT
BE gon hoi Oe ANN Rte ce. ig ee RE a a ee Ae Oe Ae ice Came. 17 TPP)

Hybrid ICs
These ceramic integrated
circuits hold the drivers for the
RS232 port, disk drive
connector, and power supply,
among others

- "Pan, +8

—_ ene

~~ CMOS Single-chip
Microcomputer

This chip controls the operation
of the entire system, and shuts

down the 8088, |/0 chips, etc.
when they are not being used, to
conserve power

ea

128K

80 character x 8 line LCD
640 x 80 graphics resolution.
Built-in graphics and international
characters

modem output, RS232, AC power
adaptor, ROM/RAM ports |

Microsoft GW BASIC
5 :

Standard 57-key typewriter-style
with 8 function keys, cursor
control keys, three other special
keys. The function keys’ values
are software- defined, and can
appear on the last line of the
screen

The manuals provided include
information about setting up the
PC-5000 and using MS-DOS, and
are quite good. The BASIC manual
has been written by Microsoft and
is too technical for the first-time
user

The 5000 offers most of the
facilities of a full-sized machine.
The built-in printer and bubble
cartridges in particular place it
ahead of its rivals

There are few weaknesses when
you consider the developments
that Sharp has made. However,
the 5000 is heavy for its size and
more expensive than other lap-
held machines. If you are used to
floppy disks, you will find the
bubble memories rather slow

THE HOME COMPUTER ADVANCED COURSE 211

are rather good at. Even relatively simple
stock recording systems, such as Dragon
Data’s disk-based program for the Dragon
64, are able to generate some surprisingly
detailed reports. In the last article in this
Series on business software we look at
alternative methods of analysing data.

know about more than one particular item of
stock. They will want to be able to look at all
aspects of their stock holdings and_ stock
movements. This can be done in two ways: either
through enquiries on the screen or printed reports.
The Dragon program’s enquiry menu contains a
number of options governing the kind of data that
is available and how it will be presented.
An esssential enquiry or reporting facility

concerns slow moving items. Since all transactions
are dated when they are keyed in to the system, the
program already has the information it needs in
order to generate a slow moving items report. Allit
has to do is to search through the transaction
history file and compare dates. Because businesses
differ in their definitions of ‘slow’ (what is slow to
one might be excellent business to another), the
report has to allow the user to define the terms.

This is neatly accomplished in the Dragon
system. By filling in a date in the area provided
(e.g. 150484, for 15 April 1984), the user will
automatically give the system a marker to start the
search. All items that have no sales transaction
histories will be read by the program and then
printed. This provides a very useful reporting
facility, since any number of slow movement

212 THE HOME COMPUTER ADVANCED COURSE

reports can be generated simply by giving the
program a different date. The only restriction on
the user is that the date has to fall within the
confines of the transaction histories on file. If there
are no slow moving items that fall within the date
specified, the screen message on the Dragon
program will read: ‘NO ITEMS WITHIN SELECTION
CRITERION’.

There is one limitation to this kind of report. It
only picks up stock items that have had absolutely
no transactions at all. Yet it is clear that in some
cases a user might well feel that a particular stock
line from which there had been two sales in six
months, should qualify as a slow mover.
A more sophisticated system would provide

greater flexibility. There are two ways of achieving
this. Either the system could offer an additional
selection criterion other than the date, such as
specifying the number of transactions below
which an item would be printed on the slow
moving report. Or the system could itself read and
compare movements on all the lines, listing, say,
the slowest 50 lines, then the next slowest 50 lines
and so on.

SCREEN DISPLAY
The screen displays each item separately.
Consequently, if there are a large number of slow
moving stock items, paging through the list will be
a time consuming business. In that case, therefore,
a printed report might well be a better alternative
than a screen display, since it is quicker and easier
to scan. The systems designer has to take this into.
consideration when a business program such as a
stock control package is being put together or
‘specified’.

The stock movement display contains a good

IAN McKINNELL

ITEM NUMBER 001000

DESCRIPTI

ITEM NUMBER

Pulling The Punches

¥ {0 11.12 12 14 13

Er

DESCRIPTION

deal of additional information that is important to
the user. It shows the value of the stock, which tells
the user how much capital is tied up in a warehouse
or storeroom. It shows the average usage per
month, the quantity in stock and the date of the
last issue. From this information, the user will be
able to work out a policy for shifting the stock,
perhaps offering it at a large discount.

The principle of reporting according to
selection criteria (the date, for example) is vital
when it comes to analysing and reporting on the
transaction data. Obviously, the system needs to
be able to list out all transactions on all items. But it
Should also indicate what has happened to
sections of the stock between specified dates.

The Dragon program accomplishes this by
prompting the user to enter the upper and lower
values of a range of stock items and the delimiting
dates (e.g. between the dates 010184 and 010484).

Besides viewing all of the business's
transactions on a specific range of items, the user
may also want a breakdown, with items grouped
together according to transaction type, or sales
figures, or stock adjustments, and so on. The
Dragon program has a menu with three options
setting the date for the selection (these are: current
period transactions only; all transactions; and
transactions within a specified date range), and
then a further sub-menu to allow the selection to
be broken down into transaction types. This sub-
menu is similar to the transaction type menu
described on page 192, but it also includes a new
option, ‘99 ALL TYPES’, which allows a blanket
print-out of all transactions within the data
parameters specified.

The program allows users to allocate stock
items to particular product groups. So users will

Over The Edge .
The edge-punched card
system is a simple form of
database. The holes around
the card are treated as
binary digits — a hole
means zero, a Slot means
one. Here, the cards
represent a firm’s stock file:
holes 1 to 3 represent
product group, 4 to 6 are
catalogue number, so holes
1 to 6 together form the item
number; holes 21 to 25
indicate the number of days
since the item was last
issued from stock, and hole

Slow Movers
Dragon Data’s Stock Control
System includes a database
module that generates a
variety of reports on the
State of the inventory.
Keeping large stocks of slow
moving items costs money,

- $0 the firm is searching
product group 101 for items
not issued for 16 days or
more; the search shows that
stocks of printer's ink are
very high, and sales are very
Slow, so stocks of ink must
be reduced} quickly

25 means 16 days

want to review the product groups and their
descriptions. They will also want to know what
stocks are held for particular product groups.
Screen-based reports are useful, but they are not
permanent records. In order to provide a ‘hard-
copy’ record, the reporting facility duplicates in
many respects the enquiry facilities offered by this
program.

There are a number of reasons why the Dragon
program is a rather restricted stock control system,
despite its detailed analytical features. The system
is designed as a ‘stand-alone’ stock system. It is not
able to link up with other, related business
applications programs that could use the
information on this program’s files. There is no
facility for allocating stock against orders. One of
the most important questions users want answered
is: ‘Have I sufficient stock in hand to meet these
orders?’ Once you have several orders from
customers with a number of different stock items
requested on each order, keeping track of the
demands made on stock is very difficult manually.

Throughout this series, we have concentrated
on the use of home computers for small business
data processing. It should by now be clear that,
although these packages may offer supposedly
integrated systems, this often means that they
concentrate on one aspect of the business — such
as cash flow — at the expense of the others — order
processing, inventory, reconciliation, for example.
Such packages are perhaps best used to provide
supplementary information to business managers.

Despite these shortcomings, home computer
business packages can greatly improve the
efficiency of small business accounting and
organisation. If chosen and used with care, such
packages can prove very useful indeed.

THE HOME COMPUTER ADVANCED COURSE 213

KEVIN JONES

GO SUB GO!

This short series of articles is designed to
help you get the most from the graphics
capabilities of the Commodore 64. We will
cover many aspects, including screen
displays, designing sprites, and keyboard
control of movement. During the course, we
will construct a Subhunter game, building
up the necessary routines as we go along.

One of the Commodore 64’s most attractive
features is its ability to allow arcade-type games to
be written in BAsic. What makes this possible is the
machine’s ability to handle sprites — high
resolution shapes that can be defined by the user
and easily manipulated on the screen. There are
special registers in the Commodore’s memory that
control attributes of the sprites, such as their
colour, size and position on the screen. By POKEing
numbers into these registers, the programmer can
easily control the action. The Subhunter game that
we will design as the focal project of this series will
make use of four of the machine’s eight available
sprites. These sprites will represent the ship, the
submarine, the depth charges fired from the ship,
and an explosion.

So that the game can be built up over successive
instalments, each section of the program will be
written as a short subroutine that is called up for
use within the main program loop. This type of
structure makes tracing bugs and program
extension much easier.

The concept of this game will be familiar to
many. The player is in control of a ship that is
hunting submarines. These cross the screen at
varying depths and speeds, and the ship drops
depth charges on them. The player’s score is
increased every time a sub is hit, the value of each
sub being calculated from its depth and speed.
Naturally, higher scores are made for hitting deep,
fast-moving submarines. However, if the sub
escapes, then its value is subtracted from the
player’s score. The ship is controlled from the
keyboard, using the Z and X keys for horizontal
movement left and right. Depth charges are fired
using the M key. A timer is displayed on the
screen, allowing the game to be played for three
minutes. At the end of this time the player is asked
if another game is required, and a record is kept of
the highest score since the program was first run.

The golden rule to observe when designing an
action game in BASIC is to keep the main loop of the
program as short as possible. The Subhunter
program makes use of subroutines to carry out
most functions within the game. The only
functions controlled directly from within the main

214 THE HOME COMPUTER ADVANCED COURSE

program loop are: updating the timer, accepting
an input from the keyboard, moving the ship, and
moving the submarine.

This program design is general enough to be
applied to any make of computer, but the detailed
programming will vary according to the individual
characteristics of the computer being used. In this
section of the project we shall look at the routine
that creates a screen display.

SCREEN DISPLAY
There are two ways to print characters to the
screen on the Commodore 64. One is to use the
PRINT statement and the other is to POKE numbers
to the areas of memory that hold information
about the display. We will use both methods in the
creation of the backdrop to our game.

The Commodore screen is made up of 25 rows
of 40 character spaces. In other words, there are
1,000 places on the screen where a character can
be placed. Each position on the screen has two
numbers associated with it. The first is a screen
code number that tells the computer which
character to display in that position. The second is
a colour number that tells the computer what
colour the character displayed should be. There
are two blocks of memory, each consisting of
1,000 locations: one to hold information about the
screen code and one to hold information about the
colour of every position on the screen. The area
that holds the screen codes is called the screen
memory and runs from location 1024 to 2023.
The colour memory runs from 55296 to 56295.

Each character has its own screen code and
these are listed on page 132 of the user guide.
There are 16 colours on the Commodore 64. The
colour codes are:

light green
light blue

| grey 3

In addition to these areas of memory, two other
locations are of special interest. Location 53280
controls the border colour and 53281 controls the
screen colour. To design the seascape setting for
our game, the top six rows of the screen will be
light blue for sky, while the rest of the screen and
the border will be dark blue to represent the sea
(except for the bottom two rows, which will
represent the sea bed).

To set the screen colour to light blue and the
border colour to dark blue, the following pair of
POKE commands is required.

POKE53281,14:POKE53280,6

The seventh row of the screen starts at location
1264. The second row from the bottom starts at
location 1944. We can colour the sea by POKEing
the screen code for a reverse space (a space
character that is blocked-out) into locations 1264
to 1943, and POKEing 6 into the corresponding
colour memory locations. There is an easy way to
connect a colour memory location with a
corresponding screen memory location: simply
add 54272 to the screen memory location.

The screen code for a space character is 32. A
reverse character’s screen code can be calculated
by adding 128 to the normal screen code, so the
code for a reverse space is 32 + 128 = 160. The
following few lines of program make use of a
simple FOR...NEXT loop to colour the sea:

FOR |=1264 TO 1943
POKE 1,160:POKE 1+54272,6
NEXT |

The seabed consists of two rows of a chequered
character with a screen code of 102, coloured
brown. Again a simple FOR...NEXT loop will do
this:

FOR |=1944 TO 2023
POKE 1,102:POKE 1+54272,9
NEXT |

The PRINT statement is also an effective method of
producing screen displays. Colour and cursor
positioning can be controlled from within a PRINT
statement either by using the special Commodore
control characters or by using CHRS codes. We will
use the latter method, as that is easier to read in
program listings. A full list of CHRS codes is given
in Appendix F of the user guide. We are interested
in those that affect colour and cursor position:

colour white

colour black

clears screen and positions cursor in

top left corner

positions cursor in top left corner

moves cursor one place DOWN

moves cursor one place UP

moves cursor one place LEFT

moves cursor one place RIGHT

As part of our screen setup routine SCORE and HI
SCORE must be PRINTed on the top line of the
screen. CHRS(19) will ensure that the cursor is at the
beginning of the top line. The following command
PRINTs the initial score in black:

PRINT CHRS(19);CHRS(144);“SCORE 000”

The HI SCORE is also to be positioned on the top
line, but on the right-hand side. The SPC function

Subhunter In Action
The program we are developing
in this series is the classic
computer graphics game of
depth-charging submarines.
The Commodore 64’s sprite
grahics are used to provide
smooth animation of the sub
and ship

IAN McKINNELL

allows a number of spaces to be inserted. The
PRINT command can now be altered to include the
H!| SCORE:

PRINT CHRS(19);CHRS (144);
“SCORE 000”;SPC(16);“HI SCORE 000°

The screen setup routine will form a subroutine to
the main program, starting at line 1000. Also
included is a POKE command that causes all the
keys on the keyboard to repeat when they are
pressed. This will be used later when the keyboard
control routine is discussed. This subroutine can
be tested by the following program lines:

10 GOSUB 1000: REM SCREEN SETUP
20 END

1000 REM **** SCREEN SETUP ****
1010 PRINT CHRS(147):REM CLEAR SCREEN

1020:
1030 REM ** COLOUR SEA **
1040 POKE5328114:POKE53280,6

1050 FOR l=1264T01943
1060 POKE 1160:POKE 1+54272,6

1070 NEXT
1080 :
1090 REM ** SEA BOTTOM **

1100 FOR l=1944T02023
1110 POKE 1102:POKE 1+54272,9
1120 NEXT
1130 POKE 650128:REM REPEAT KEYS

1140 :

1150 REM ** SCORE**
1160 PRINTCHRS(19); CHRS(144);

“SCORE 000”:SPC(16);“H! SCORE 000°

1170 RETURN

1180 :
1190 :

Once the routine has been entered, it is a good idea
to save it on _ or disk before running it.

THE HOME COMPUTER ADVANCED COURSE 215

| NL

WZ i MAN

COUNTER INSTRUCTIONS

Loops and_ conditional branches are
implemented in Assembly language by
using the processor status register flags to
test the condition of the accumulator, and
the relative jump instructions to change the
flow of control in the program. These
Structures and the indexed addressing
mode combine in creating data tables.
esteem ENR

Before we can begin to use the various CPU
addressing modes (especially indexed addresses)
to advantage, we must first be able to write a loop.
Without this fundamental structure we are in
much the same position as a BASIC programmer
who knows about arrays, but is ignorant of the
FOR...NEXT command. There are no automatic
structures like FOR...NEXT in Assembly language
(though there is a Z80 instruction that is very close
to it), but we can construct loops of the IF... THEN
GOTO... type. These require instructions that make
decisions or express conditions, and effectively
change the order in which instructions are obeyed
in the program.

Decision making in Assembly language centres
on the flags in the processor status register. These
flags show the effects on the accumulator of the
last instruction executed, and are sometimes
called condition flags. All these flags can be used
in decision making, but we will need to consider
only two of them at present — the zero (Z) and the
carry (C) flags.

The state of these flags can be used to decide
whether the processor executes the next
instruction in the program, or whether it jumps to
another instruction elsewhere in the program. The
decision to continue or to jump is arrived at by the
processor’s either changing or accepting the
address contained in its program counter. This
register always contains the address of the next
machine code instruction to be obeyed. When the
processor begins to execute an instruction, it loads
the op-code of the instruction from the byte
pointed to by the address in the program counter.
The address in the register is incremented by the
number of bytes in the instruction so that the
program counter then points to the op-code of the
next instruction. If the current instruction causes
the program counter to point to an address
elsewhere in the program, then a jump is
effectively generated.

On the 6502, the instruction BEQ causes the
program counter to be changed if the zero flag is
set. BCS is the equivalent instruction if the carry
flag is set. On the Z80, these instructions are JR Z
and JR C respectively. These four op-codes are

216 THE HOME COMPUTER ADVANCED COURSE

called branch instructionsbecause they represent a
branch-point in the flow of program control. Their
operand is a single-byte number, which is added to
the address in the program counter to produce a
new address. Consider what happens when the
following program is executed:

If the ADC instruction at $5E00 produces a zero
result in the accumulator (which is unlikely but, as
we'll see later, possible), then the BEQ and JR Z
instructions at $5E02 will cause $03 to be added to
the contents of the program counter. The next
instruction to be executed, therefore, will be the
return instruction at $5E07, causing the instruction
at $5E04 to be skipped over.

At first sight, this may seem wrong. After all, if
the instruction at $5E02 causes $03 to be added to
the program counter, surely the address stored
there will become $5E05? But it is important to
remember that the program counter always points
to the nextinstruction to be executed and not the
instruction currently being obeyed. Thus, when
the instruction at S5E02 begins execution, the
program counter will contain the address $5£04 —
the location of the next instruction. If $03 is added
to $5E04 the result will be $5E07, the address of the
following instruction.

It’s worth remarking here that the processor is
not capable of checking whether the addresses
pointed to are correct. If we inadvertently change
the displacement in the instruction to $02, then the
program counter will be increased (if the
accumulator contains zero) by $02, and the
processor will consider $5E06 to be the address of
the op-code of the next instruction. In our correct
program, $5E06 contains the value S5E, which is
the hi-byte of the operand of the instruction at
S5E04. The processor, however, cannot evaluate
whether it is the right instruction or not. As far as it
is concerned, S5E is a valid op-code and it will
proceed to execute it, taking the bytes following
S5E06 as the operands of the instruction. The
program will probably crash as a result.
Miscalculating displacements like this is one of the
commonest errors in machine code programming.

In Assembly language programming, however,
calculating jump displacements need not be a
problem because the assembler program can do it
for us. Therefore, instead of supplying a hex
displacement as the operand of the branch

instruction, we give the symbolic address of the
instruction to be jumped to. This makes the
Assembly language program far easier to follow.
The assembler decodes the symbolic address into
an absolute address, calculates the displacement
necessary to get to the address, and writes that
displacement into the machine code instruction.
The symbolic address is called a label, and it’s
analogous to a BASIC program line number.

Let’s take a closer look at how labels are used. A
label is an alphanumeric string written at the start
of an Assembly language instruction. It is treated
by the assembler program as a two-byte symbol
standing for the address of the first byte of the
instruction. Therefore, we can re-write the
program given in this way:

The instruction at $5E02 can now be read as ‘IF the
value of the accumulator is zero THEN GOTO the
address represented by the label EXIT’. This is an
enormous improvement in readability over the
previous version, and greatly decreases the
chance of miscalculating the jump destination.
We can now use labels and the branch

instructions to create a loop:

JR = _NZ,START
LD (S5E20),A

Notice here the use of the new label, START, as well
as the new branch instructions: BNE, meaning
‘Branch if the accumulator is Not Equal to zero’;
and JR NZ, meaning ‘Jump if the accumulator is
Not equal to Zero’. Let’s consider what effect this
code will have. The program will first add $34 to
the accumulator. If the result is not equal to zero
then the program branches back to $5E00 — the
address represented by the label START. $34 will
again be added to the accumulator, and the result
will decide whether another branch occurs. This
‘loop’ will go on and on until the branch condition
is met. When the contents of the accumulator do
equal zero following an ADC instruction, then the
branch at $5E02 will not occur, and the instruction
at $5E04 will be executed next.

This is exactly like an IF... THEN GOTO... loop in
BASIC, except that it’s difficult to see how the
accumulator could ever become zero. After all, it
is being increased by $34 every time the loop is
executed! How will it ever add up to zero? The
answer lies in the fact that the accumulator is only
a single-byte register, and if the addition results in
a two-byte number, then the carry flag of the
processor status register will be set, and the
accumulator will hold the lo-byte of the result. If

the accumulator contains SCC, for example, then
adding $34 will give the two-byte number $0100.
The carry flag will be set, and the accumulator will
hold the lo-byte of this result — $00. Thus, the
contents of the accumulator would be zero, and
the zero flag set as a result.

With this result in mind, we might re-write the
program to use a different branch condition,
incorporating the state of the carry flag rather than
the state of the zero flag.

In this version, the instruction at $5E02 reads ‘if the
carry flag is clear, branch to START’. As soon as the
result of adding $34 to the accumulator is greater
than SFF, then the carry flag will be set, and the
branch back to the START address will not occur.

LOOP COUNTERS
It may seem that branching according to the
current condition of either the carry flag or the
zero flag is a rather limited facility, but it permits a
wide range of decision making, as we shall shortly
see. What is definitely lacking from our repertoire
now is the ability to keep a oop counter. We might
wish, for example, to count the number of times
that a loop is performed before the exit condition
occurs, or we might want to cause an exit from the
loop after a given number of iterations. The first
objective is easily achieved by employing a CPU
index register to hold the counter, and an
increment instruction to update the counter:

The new structure has forced several changes in
the program. Firstly, the instructions inserted at
the beginning of the program require a new ORG
address. These instructions have much the same
effects on both the 6502 and the Z80 processors,
but their lengths are different, so the location
addresses are no longer the same in both versions
of the program.

Secondly, new versions of the load (LDX, LD IX)
and store (STX, LD(),IX) instructions have beer
used to place an initial value of $00 in the CPU

THE HOME COMPUTER ADVANCED COURSE 217

\ RS

ni
4]
ga

= tA
‘ |

\\ [

ES SS (i
|

index register. The 6502 X register is a single-byte
register, but the IX register of the Z80 has two
bytes. The index registers have special functions,
but they are essentially CPU RAM just like the
accumulator, and here we use them as extra
accumulators in which to keep the loop count.
When the loop exit occurs, the contents of the
6502 X register will be stored at $5E20. In the Z80
version the lo-byte of the (two-byte) IX register will
be stored at $5E20 and the hi-byte at $5E21.

Thirdly, a completely new instruction has taken
the place of the ADC instruction as the START of the
loop: INX and INC IX are both increment
instructions, causing the contents of the index
register to be increased (or incremented) by $01.
This updates the value of the loop counter every
time the loop is executed.
We can see the program as reading: ‘make the

loop counter zero, start the loop by incrementing
the counter, add $34 to the accumulator, and
branch back to the start of the loop if the carry flag
is Clear, otherwise store the loop counter contents
at $5E20’. A further modification of the program
will greatly increase its usefulness and scope:

08 EX

The 6502 and Z80 versions both have the same
effect: they create at location $5E22 a storage table
of the successive values of the accumulator as the
program is executed, and eventually store at $5E20
the final value of the loop counter, which is also the
number of bytes in the table starting at $5E22.

The 6502 version achieves this through the
instruction STA $5E22,.X, which means ‘add the
contents of the X register to the base address,
S5E22, then store the contents of the accumulator
at the address thus formed’. The STA instruction is
here in the absolute direct indexed mode: that is to
say, the X register is used as an index to modify the
base address, $5E22. Since the X register is
initialised to $00 and subsequently incremented
every iteration, the starting value of the
accumulator will be stored at $5E22, the next value
at S5E23, and so on. After the loop exit occurs, STX
will store the final value of the loop counter at
location $5E20.

The Z80 version uses the IX register as a pointer
to the current storage address, while still using the

218 THE HOME COMPUTER ADVANCED COURSE

i
=] =
=|
=
z
=
=

:
|
=
=|
= =

ae
YY
§ YY

SEC EUS,
a erare%s ANY

MAAK A}

Hereernennnenennnnenee AMMAN KAAAAAAAAAAAS Was

WAAR

FUVVE OOOO

AAS?
OS®

@ YY
RAAS

OOK YY) o

Tei

y . = == _ mamerien oT ean maaan tis si Het aueMie ed ialtenuaien einen ate

ei Me ei i ua ae lA Ua ll A A

Relative Jumps
Most of the branch
instructions, such as BCS
(meaning ‘branch if carry flag
is set’), JR NZ (meaning
‘branch if the accumulator is
non-zero’), act according to
the condition of the processor
status register, and use the
relative jump mode in
redirecting the flow of control
through the program. The
alternative is the absolute
jump.

In the example, the BCS $01
instruction always causes a
relative jump of one byte

forward (when it causes a
jump at all, that is; it’s
conditional on the state of the
carry flag) no matter what the
location address at which the
machine code resides. Here,
the BCS $01 instruction is
always followed by the INX
instruction, itself only a
single-byte instruction; when

_ the carry flag is set, therefore,
BCS will cause the INX
instruction to be skipped.

Absolute Jumps
In this example, the JP
$65A2 instruction causes an
unconditional jump whenever
it is encountered. Its effect is
to redirect program execution
to the address which forms
its operand — S65A2 here.
No testing is done, and the
location address of the
instruction at the time of
execution is not significant;
program execution always
continues from the specified
address.

Both jump modes have
advantages and
disadvantages, but the most
important criterion in
choosing between a relative
jump or an absolute jump is
relocatability: it’s quite
common in Assembly
language programming to
write a routine and assemble
it at one ORG address, then
re-use it in the same form but
with a different ORG value. If
all the jumps in the routine
are relative, then changing
the location addresses of the
instructions will not matter at
all, and the program will flow
smoothly along its intended
paths; if any of the jumps is
absolute, however, when the
routine is assembled at a
different ORG, the jumps will
still send control to the
specified address, which may
now have no significance for
the routine. Relative jumps
are relocatable, absolute
jumps are not.

lo-byte of IX as the loop counter. The instruction
LD IX,S5E00 puts the base address, $5E00, into the
IX register, so the lo-byte of IX will contain $00. The
peculiar-looking instruction LD (IX+$22),A means
‘add the address contained in IX to $22, and store
the contents of the accumulator at the address thus
formed’. Since |X is initalised to $5E00, and is
subsequently incremented at every loop
interation, the starting value of the accumulator
will be stored at $5E22, the next value at $5E23, and
so on. Meanwhile the lo-byte of IX records the

Exercises
There are many important, and possibly puzzling,
points in this instalment, and only experience of
using the new addressing modes and instructions
will make you fully understand them. ©

Use the CHAMP assembler package to assemble ~
and SAVE the various program fragments in this
instalment. When you execute a fragment, use the
«debug» mode to examine the memory locations that
should be affected. It’s a good idea always to initialise
these locations with a recognisable constant — SFF,
for instance — before execution, so that afterwards —
you can tell whether memory has been affected by
the program. You can use the <debug> Alter
command to do this, or even the <debug> Move
command.
Remember, as always, that the location addresses _
given in the program are for example only, and that
you must choose addresses suitable for your
machine. :

The conditional branch instructions, as we have seen,
depend on the contents of the processor status
register. One reason for adding the binary display
option to the Monitor program (see pages 118 and
198) was to enable you to inspect the contents of the
PSR before and after an instruction is executed, and
observe the changes in the flags. There is no single
instruction in either 6502 or Z80 Assembly language
to store the PSR contents, so we must use these
commands:

number of loop iterations, and is finally stored at
S5E20 when the loop terminates. The LD (IX+$22),A
instruction here is in the absolute indirect indexed
addressing mode, which is_ rather more
complicated than the 6502 version but much more
powerful. ,

We have now looked at the Assembly language
loop and array structures in some detail. These are
both extremely helpful machine code
programming techniques. In the next instalment
of the course, we'll put them both to work.

Loading And Saving CHAMP

_ For convenience and security you should copy
CHAMP onto another tape, and then remove the
write-protect tabs from the original and the copy. In
the following instructions, the LOAD instructions
refer to the CHAMP tape, and SAVE refers to the copy
tape: :

BBC Model B
1) LOAD“CHAMP”
2) SAVE“CHAMP” : RUN : Quit to BASIC
3) *SAVE“CHAMP M/C” 1000 , 4600

Commodore 64
1) LOAD“CHAMP”
2) SAVE“CHAMP” : RUN : enter <debug> mode
3) Hit [w][ret], followed by [s] for SAVE
4) Start address 1000; end address 4600; filename
“CHAMP M/C”

Spectrum
1) LOAD“CHAMP”
2) Quit to BASIC : SAVE “CHAMP” LINE 1
3) SAVE “CHAMP M/C” CODE 27000,9231

This sequence of instructions will cause the current
contents of the PSR to be stored in the byte addressed
by STORE1 (an address appropriate to your machine),
while the accumulator contents will be stored at
(1+STORE1). To use these instructions, simply insert
them as a block before and after the program
instruction whose effect you wish to observe. You
must remember, however, to add two to the value of
STORE1 every time you insert this block. When you've
executed the program, you can use the Monitor to
display the section of memory where you've stored the
various contents of the PSR and the accumulator.

Itmay occur to you that this block should be treated
as a subroutine rather than repeatedly entering it
where it is required. There is an Assembly language
equivalent of BASIC’s GOSUB, but using it here would
complicate matters since it uses the stack, and this
would interfere with the block’s use of the same list
(PLA, PUSH, PHP, etc. are all stack manipulations,
which will be more fully explained later). You may
notice the difference in length between the Z80 and
6502 code: the Z80’s two-byte registers and
associated instructions are responsible for this
variation.

THE HOME COMPUTER ADVANCED COURSE 219

Chip Set
These photo-micrographs
illustrate the complexity of
microprocessor circuits. On the
left is a highly magnified
picture of Zilog’s immensely
successful Z80 and on the
right, a more recent chip from
the Z8000 series. Notice that
the Z8000, being a 16-bit chip,
has a more dense design and
more connections around the
edge of the chip

Zilog’s President
Frank de Weeger

BREAKING AWAY

prmimensiceige rate ees

- ; a

sia tases

= 7 “- aa #

-s Tiida mee glint ome oe ee

| EEE As : a
er = seomneners _—

> = x

When Zilog Incorporated first introduced
the Z80 microprocessor in 1977, few
people suspected that it was about to begin
a revolution. But within a few short years,
the Z80, and its arch rival the 6502, would
turn into reality what had previously been
considered a flight of science fiction fantasy
— a computer in every home.

The history of Zilog begins in the early seventies
when Frederico Faggin and Masatoshi Shima,
two employees of the microchip manufacturer
Intel, broke away to form their own company.
The two men had been involved in the
development of the 8080A_ microchip
(considered the first ‘computer on a chip’), and
using this experience they began work on a new
development of the microprocessor. The 8080
was already proving to be very popular with
computing designers and hobbyists, and so
Faggin and Shima, not unnaturally, decided to
design the new chip to be compatible with the
8080. It could therefore take advantage of the
large quantity of software that had already been
written for the 8080. Using their detailed
knowledge of the 8080, they were able to extend
the instruction set (the list of machine code
commands contained within the microprocessor)
by introducing extra registers, two - byte op-
codes and other techniques. The microprocessor
— the Z80 — was a considerable improvement .

This revolution in hardware fortunately
coincided with ‘a parallel revolution in software.
In 1972, Gary Kildall and John Torode wrote a
program called Control Program/Monitor, or
CP/M, which allowed a microprocessor to

220 THE HOME COMPUTER ADVANCED COURSE

handle the recently introduced floppy disk.
Because Kildall was a consultant to Intel, the
program was designed to run on the 8080 and
8085. CP/M was rapidly becoming the dominant
disk handling system for microcomputers, and
with their powerful new 8080-compatible
microprocessor, Zilog were ideally placed to take
advantage of the rush to CP/M software.

Zilog’s path has not been so smooth in
subsequent years. Although the Z80 is still selling
in vast quantities — the company still produces
around a million a month — attempts to upgrade
the chip to the 16-bit market have met with a
mixed response.

Zilog’s first attempt at a 16-bit processor was
the Z8000. Although generally acknowledged as
a very powerful device, with a comprehensive
instruction set and a large number of registers, it
proved to be an extremely complex chip to
program. The Z8000 encountered several other
major obstacles. To begin with, although
compatible with the yet to be launched 32-bit
Z80000 (or Z80K), it was not compatible with
the Z80 and so was unable to take advantage of
the range and variety of programs that had been
written for the Z80 in the preceding years. This
meant that those manufacturers interested in 16-
bit upgrades for their machines tended to turn to
a less demanding microchip.

With the Z8000 proving to be unpopular in the
microcomputer market, Zilog went back to the
drawing board. The company is soon to launch
the Z800 16-bit processor, which is compatible
with the Z80. Things are also looking bright in
other areas: Commodore have announced that
their new range of business machines will be
powered by the Z8000.

DATA IN STORE
Coming soon in

Beautiful patterns can be created
with ease by using the right
geometrical formulae. We show |
you how with a program for the
13}] @M\Y bles domme) ol=lejnqbbacm- vale!
Oric-1/Atmos in Issue 17

Computer buffs can take their
enthusiasm travelling and impress
their fellow train passengers if
they equip themselves with a lap-
1aX=) CoM oleyar-Vo)(—waahlorgemm@)etanir-larta—wmnal
Issue 18 reviews half a dozen of
these light-weight wonders

J \oWolsle)lol-moymait-malessimerahalc—raer-tal
Jol=Meyal-Me)mdat—waales-jmereyarint-jtale|
topics that the computer user has
to face. In Issue 19 we shed light
on daisy wheel printers, which
offer the highest quality of print-
Jo)bhmat-Wt,--3ak- Le fa rele)

THE HomME COMPUTER ADVANCED COURSE

bh al=y atc) Co Me tc- Bichige)bbali-mereyaqheeiicye
fo f-baal-mer-Withave Miep are jttlel ami she-e-balem-|
fast finger on the keyboard. Ina
new series beginning in Issue 20,
we program this game for the BBC
IN bKes comm e-lahalem-(oht¢-bate-(e(-meymant—
machine’s superb graphics
for-hey-Veytbiays

If computing leaves you with no
money to invest on the stock
exchange, do the next best thing
Joie) E-yistatem-We)bt-jtal—1-s-Mer-baal-meya!
your micro. We review a portfolio
of these simulations in Issue 21

Give your computer some
pictures to look at by linking it to a
digitiser- a device that turns
images into numbers. Digitisers
are explained and compared in
Issue 21

All this and, of course, the Home Computer Advanced Course regular

features: applications, reviews of hardware and software, programming
icaYod ebable{p(=t-Mmpaet-(olabbal-Meolelel—mergelepa-badt-me- tale mattlelimitle) ¢—aee

PLACE A REGULAR ORDER WITH YOUR NEWSAGENT

